Abstract

In this paper, we propose a novel method for fast face recognition called L 1/2-regularized sparse representation using hierarchical feature selection. By employing hierarchical feature selection, we can compress the scale and dimension of global dictionary, which directly contributes to the decrease of computational cost in sparse representation that our approach is strongly rooted in. It consists of Gabor wavelets and extreme learning machine auto-encoder (ELM-AE) hierarchically. For Gabor wavelets’ part, local features can be extracted at multiple scales and orientations to form Gabor-feature-based image, which in turn improves the recognition rate. Besides, in the presence of occluded face image, the scale of Gabor-feature-based global dictionary can be compressed accordingly because redundancies exist in Gabor-feature-based occlusion dictionary. For ELM-AE part, the dimension of Gabor-feature-based global dictionary can be compressed because high-dimensional face images can be rapidly represented by low-dimensional feature. By introducing L 1/2 regularization, our approach can produce sparser and more robust representation compared to L 1-regularized sparse representation-based classification (SRC), which also contributes to the decrease of the computational cost in sparse representation. In comparison with related work such as SRC and Gabor-feature-based SRC, experimental results on a variety of face databases demonstrate the great advantage of our method for computational cost. Moreover, we also achieve approximate or even better recognition rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.