The percutaneous penetration and exposure risk of organophosphate esters (OPEs) from children’s toys remains largely unknown. Percutaneous penetration of OPEs was evaluated by EPISkin™ model. Chlorinated OPEs (Cl-OPEs) and alkyl OPEs, except tris(2-ethylhexyl) phosphate, exhibited a fast absorption rate and good dermal penetration ability with cumulative absorptions of 57.6–127 % of dosed OPEs. Cumulative absorptions of OPEs through skin cells were inversely associated with their molecular weight and log octanol-water partition coefficient. Additionally, a quantitative structure-activity relationship model indicated that topological charge and steric features of OPEs were closely related to the transdermal permeability of these chemicals. With the clarification of the factors affecting the transdermal penetration of OPEs, the level and exposure risk of OPEs in actual toys were studied. The summation of 18 OPE concentrations in 199 toy samples collected from China ranged from 6.82 to 228,254 ng/g, of which Cl-OPEs presented the highest concentration. Concentrations of OPEs in toys exhibited clear type differences. Daily exposure to OPEs via dermal, hand-to-mouth contact, and mouthing was evaluated, and dermal contact was a significant route for children’s exposure to OPEs. Hazard quotients for noncarcinogenic risk assessment were below 1, indicating that the health risk of OPEs via toys was relatively low.