Abstract
Nitric oxide (NO) absorption in ionic liquids (ILs) is an interesting issue, but little attention has been focused on the removal of NO at low partial pressures. Herein, a series of protic ionic liquids (PILs) based on polyamines as the cation and hydroxybenzenes as the anion were prepared for capturing low-concentration NO (0–0.6 bar). Triethylenetetramine phenolate ([TETAH][PhO]) showed an excellent absorption performance, with low viscosity, fast absorption rate, and high absorption capacity. The experimental solubility data were fitted by the Krichevsky–Kasarnovsky (K–K) equation, and the absorption enthalpy (ΔH) of NO in [TETAH][PhO] was thus calculated to be −43.60 kJ/mol. Density functional theory calculations were further performed to better understand the interaction of [TETAH][PhO] with NO on the molecular level, and the results suggest that the weak interaction of NO with the PIL was induced by the presence of H protons. It is believed that this work may provide a new method for the efficient and reversible absorption of low-concentration NO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.