The use of semiconductor nanocrystals in scalable quantum technologies requires characterization of the exciton coherence dynamics in an ensemble of electronically isolated crystals in which system–bath interactions are nevertheless strong. In this communication, we identify signatures of Fano-like interference between excitons and photocarriers in the coherent two-dimensional photoluminescence excitation spectral lineshapes of mixed lead-halide perovskite nanocrystals in dilute solution. Specifically, by tuning the femtosecond-pulse spectrum, we show such interference in an intermediate coupling regime, which is evident in the coherent lineshape when simultaneously exciting the exciton and the free-carrier band at higher energy. We conclude that this interference is an intrinsic effect that will be consequential in the quantum dynamics of the system and will thus dictate decoherence dynamics, with consequences in their application in quantum technologies.
Read full abstract