Abstract

Nanoscale Fano resonances, with applications from telecommunications to ultra-sensitive biosensing, have prompted extensive research. We demonstrate that a superconducting qubit, jointly coupled to microwave waveguides and an inter-digital transducer composite device, can exhibit acoustic Fano resonances. Our analytical framework, leveraging the Taylor series approximation, elucidates the origins of these quantum acoustic resonances with periodic Fano-like interference. By analyzing the analytical Fano parameter, we demonstrate that the Fano resonances and their corresponding Fano widths near the resonance frequency of a giant atom can be precisely controlled and manipulated by adjusting the time delay. Moreover, not just the near-resonant Fano profiles, but the entire periodic Fano resonance features can be precisely modulated from Lorentz, Fano to quasi-Lorentz shapes by tuning the coupling strength of the microwave waveguide. Our analytical framework offers insights into the control and manipulation of periodic Fano resonances in quantum acoustic waves, thereby presenting significant potential for applications such as quantum information processing, sensing, and communication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call