Multi-path transmission significantly improves network performance, yet it complicates the problem of fair resource allocation. While traditional fair bandwidth allocation schemes thrive in single-path settings, they often falter when applied to multi-path environments, highlighting the challenge of achieving fair bandwidth sharing in such networks. To tackle this issue, the concept of "max-min similarity" of queuing delays has been introduced based on insight into the intrinsic interactions between queuing packets, delays, and bandwidth allocation, which leads to a formal definition of max-min fair bandwidth allocation for multi-path environments. Theoretical analysis shows that the max-min similarity of queuing delays is a sufficient condition for max-min fair bandwidth allocation in single bottleneck environments. A novel distributed end-to-end fair bandwidth allocation algorithm, named DMFBA, is then proposed, which separates the control into flow-level and transmission path-level. In achieving max-min similarity in queuing delays by dynamically adjusting the distribution of flows’ queuing packet quotas across paths it achieves the goal of max-min fair bandwidth allocation. Two sets of numerical simulation experiments were conducted and the results show that DMFBA has less overhead and faster convergence than the traditional utility fair algorithms.