While soft tissues are commonly damaged by mechanical loading, the manifestation of this damage at the microstructural level is not fully understood. Specifically, while rate-induced stiffening has been previously observed in cerebral arteries, associated changes in microstructural damage patterns following high-rate loading are largely undefined. In this study, we stretched porcine middle cerebral arteries to failure at 0.01 and >150 s-1, both axially and circumferentially, followed by probing for denatured tropocollagen using collagen hybridizing peptide (CHP). We found that collagen fibrils aligned with the loading direction experienced less denaturation following failure tests at high than low rates. Others have demonstrated similar rate dependence in tropocollagen denaturation during soft tissue failure, but this is the first study to quantify this behavior using CHP and to report it for cerebral arteries. These findings may have significant implications for traumatic brain injury and intracranial balloon angioplasty. We additionally observed possible tropocollagen denaturation in vessel layers primarily composed of fibrils transversely aligned to the loading axis. To our knowledge, this is the first observation of collagen denaturation due to transverse loading, but further research is needed to confirm this finding. STATEMENT OF SIGNIFICANCE: Previous work shows that collagen hybridizing peptide (CHP) can be used to identify collagen molecule unfolding and denaturation in mechanically overloaded soft tissues, including the cerebral arteries. But experiments have not explored collagen damage at rates relevant to traumatic brain injury. In this work, we quantified collagen damage in cerebral arteries stretched to failure at both high and low rates. We found that the collagen molecule is less damaged at high than at low rates, suggesting that damage mechanisms of either the collagen molecule or other elements of the collagen superstructure are rate dependent. This work implies that arteries failed at high rates, such as in traumatic brain injury, will have different molecular-level damage patterns than arteries failed at low rates. Consequently, improved understanding of damage characteristics may be expanded in the future to better inform clinically relevant cases of collagen damage such as angioplasty and injury healing.
Read full abstract