This study investigated magnetic graphene oxide nanoparticles (MGO-NPs) and functionalized with chitosan (CS-MGO-NPs) for removing florasulam, metalaxyl, and thiamethoxam pesticides from water. A comprehensive characterization employing Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential measurements, XRD analysis, and surface area/porosity determinations confirmed the successful synthesis of the composites with the desired properties. Factorial experimental design was applied to identify the most significant factors of pesticide concentration, adsorbent amount, temperature, pH, agitation time, and ionic strength on the efficiency of removal of tested pesticides from water samples. CS-MGO-NPs exhibited superior removal efficiencies for all three pesticides compared to MGO-NPs. They achieved high removal rates for florasulam (average 92.94%) and metalaxyl (average 88.95%), while demonstrated moderate effectiveness against thiamethoxam (average 64.04%). Different kinetic and isotherm models described how well the nanoparticles adsorbed each pesticide. According to these models, the pseudo-first-order kinetic model interpreted well the adsorption of florasulam, and thiamethoxam onto CS-GO-NPs. While the pseudo-second-order kinetic model interpreted well the adsorption of metalaxyl. The Freundlich isotherm model gave the best fit with florasulam onto CS-GO-NPs. While the Langmuir isotherm model gave the best fit with metalaxyl and thiamethoxam. Finally, the toxicological studies of CS-MGO-NPs in rats were performed, and it was found negative effects at high doses, suggesting caution is needed for practical applications. Overall, this study shows promise for CS-MGO-NPs in water purification, but safety needs further investigation.
Read full abstract