The poor dispersion of multiwalled carbon nanotubes (MWCNTs) and weak interfacial adhesion of fabric and resin matrix seriously affect the tribological performance of fabric‐reinforcement resin composites. Tannic acid (TA), a plant‐derived compound, which is similar to mussel‐inspired polydopamine, can adhere to various substrates under a weak basic buffer solution. Therefore, in this work, TA‐modified MWCNTs were incorporated into TA functionalized fabric composite to improve the tribological performance of the fabric composite. The results indicate that the MWCNTs and fabric were successfully modified with TA. The wear tests revealed that the TA‐MWCNTs reinforcement TA‐fabric resin composites exhibited the best tribological performance, in which the friction coefficient and volume wear rate decreased by 16.9% and 40%, respectively, compared with pristine fabric composite. The favorable interfacial bonding between fabric and resin is beneficial to the friction force transfer to the load‐bearing fabric, decreasing the stress focus and thus reducing the damage to composite materials. Meanwhile, the good dispersion of MWCNTs contributes to the excellent lubrication performance. This simple and eco‐friendly method of treating fillers with TA provides a new approach to achieve high‐performance tribological materials.