Sewage pollution leads to the contamination of bivalve shellfish by pathogenic microorganisms. Bacterial indicators support the management of risks associated with the consumption of shellfish; however, they often fail to indicate adequately the potential hazard to human health posed by certain human enteric viruses. Bacteriophages have been proposed as alternative indicators that may more effectively predict the presence of enteric viral pathogens. This study explored the relationships between bacterial indicators (Escherichia coli (E. coli), faecal coliforms (FC) and intestinal enterococci (IE)), phages (somatic (SOMPH), F-specific RNA (F + PH) and human-specific Bacteroides GB-124 phages (GB124PH)) and Norovirus (NoV) (GI/GII) in mussels (Mytilus edulis) and their overlying waters. The bioaccumulation of these indicators and Norovirus in shellfish matrices (e.g., flesh, digestive gland) was investigated bimonthly over a 12-month period in an English estuary. The findings revealed a marked seasonality in the distribution of all organisms, with the highest levels occurring during the autumn/winter months. The levels of all phages in shellfish and their overlying waters correlated better with the levels of Norovirus than with those of bacterial indicators. Somatic coliphages were the indicator that exhibited the strongest correlations with NoV (rho = 0.929). This study suggests that relatively low-cost culture-based phage enumeration appears to offer a more accurate indication of the likely presence of Norovirus in mussels than traditional bacterial indicators.