The earth’s surface consists of arid, semi-arid, and hyper-arid lands, where life is profoundly challenged by harsh conditions such as temperature fluctuations, water scarcity, high levels of solar radiations, and soil salinity. The harsh environmental conditions pose serious consequences on plant survival, growth, and productivity accessibility of nutrients reduces. To cope with the harsh environments and increase plant productivity, an extremophilic microbe has attracted agriculturists and environmentalists. The extremophilic microbes, adapted to extreme environmental conditions, offer an unexploited reservoir for biofertilizers, which could provide various forms of nutrients and alleviate the stress caused by the abiotic factors in an environment-friendly manner. Worldwide, minerals solubilizing extremophilic microbes are distributed in various hotspots and belong to three domains of life including, archaea, bacteria, and eukarya. The minerals solubilizing extremophilic microbes belong to diverse phyla, namely, Ascomycota, Actinobacteria, Basidiomycota, Bacteroidetes, Crenarchaeota, Deinococcus-Thermus, Euryarchaeota, Firmicutes, and Proteobacteria. Mineral solubilizing extremophilic microbes achieve the mineral solubilization of phosphorus, potassium, zinc, and selenium by secreting special compounds such as organic acid, exopolysaccharides, and different enzymes. Consequently, extremophilic microbes are becoming increasingly important in agriculture, industries and environmental biotechnology as well, paving the way for novel sequencing technologies and “metaomics” methods, including metagenomics, metatranscriptomics, and metaproteomics. The extremophilic microbial diversity and their biotechnological application in agriculture and industrial applications will be a milestone for future needs. The present review deals with biodiversity, mechanisms and potential biotechnological applications of minerals solubilizing extremophilic microbes.