Abstract

AbstractConductive hydrogels, despite their significant potential, have faced historical limitations including vulnerability to dehydration, degradation of performance at extreme temperatures, and susceptibility to freezing in subzero conditions. Furthermore, the development of hydrogels that are both tough and stretchable, capable of maintaining performance under extreme environmental conditions, has remained a challenging task. Herein, an innovative conductive organohydrogel, distinguished by its superior toughness, stretchability, stability in regular ambient conditions, vacuum adaptability, and resistance to extreme temperatures is presented. By implementing a unique dry annealing process during synthesis, the mechanical strength of the organohydrogel has been substantially enhanced, dehydration concerns have been alleviated, and the structural integrity has been reinforced. In addition, the composition of the organohydrogel is specifically engineered to achieve both lasting endurance and sustainable longevity. This study signifies a crucial leap forward in creating high‐performing organohydrogels capable of functioning in a wide range of environments and conditions, thereby unlocking an array of adaptable applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call