Abstract

AbstractTopological analysis is widely adopted in various research fields to unveil intricate features and structural relationships implied in geometrical objects. Especially, in the fields of data analysis, exploring the topological properties of various images offers rich insights into the intrinsic geometrical information within them. In this study, a novel approach is proposed to investigate the topological properties of arbitrary grayscale images by employing a straightforward procedure used in 2D magnetism studies to calculate topological numbers. This method utilizes machine learning techniques to transfer chiral magnetic textures onto the images. Then, the topological number is then computed directly from the converted images by integrating the solid angles formed by adjacent spin vectors. The method successfully identifies the topological numbers of various grayscale images, showing stable performances against small noises. Furthermore, two applications of the method: are demonstrated topological analysis of the Modified National Institute of Standards and Technology (MNIST) dataset and the counting of blood cells in microscopic images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.