Staphylococcus aureus causes a wide range of infections from mild skin and soft tissue to severe life-threatening bacteremia. The pathogenicity of S. aureus infections is related to various bacterial surface components and extracellular proteins such as toxic-shock syndrome (TSS) toxin and Panton-Valentine leukocidin (PVL). In this study we determine the antimicrobial resistance of isolated strains and their virulence genes in Ethiopia. A total of 190 archived S. aureus isolates from four Ethiopia Antimicrobial Resistance (AMR) Surveillance sites were analyzed. The identification of S. aureus was done by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF Biotyper) and antimicrobial susceptibility test (AST) was done using VITEK® 2. Multiplex PCR was used to detect mecA, mecC, pvl and spa genes and super-antigens (sea, seb, sec, seh and sej staphylococcal enterotoxins). A total of 172 isolates were confirmed as S. aureus, 9 (5.23%) were methicillin-resistant S. aureus (MRSA) and 163 (94.76%) were methicillin-susceptible S. aureus (MSSA). AST showed that 152 (88.4%) isolates were resistant to penicillin; 90 (52.32%) resistant to trimethoprim-sulfamethoxazole; and 45 (26.16%) resistant to tetracycline. A total of 66 (38.37%) isolates harbored at least one staphylococcal enterotoxin gene and 31 (46.96%) isolates had more than one. The most frequent enterotoxin gene encountered was seb 28 (16.28%). The TSST-1 gene was detected in 23 (13.37%). Presence of staphylococcal enterotoxin gene showed significant association with antibiotic resistance to cefoxitin, benzylpenicillin, oxacillin, erythromycin, clindamycin, tetracycline and SXT. The pvl gene was detected in 102 (59.3%) of isolates. Isolates from patients below 15 years of age showed significantly high numbers of pvl gene (P = 0.02). Presence of sej (P = 0.011) and TSST-1 (P <0.001) genes were associated with the presence of pvl gene. In this study, isolates were highly resistant to oral antibiotics and the pvl, seb, sea and TSST-1 genes were prevalent.
Read full abstract