This paper aims to formulate anisotropic cosmological solution of a non-static spherical structure with the help of gravitational decoupling scheme through minimal geometric deformation in f(G,T) gravity. This technique transforms only the radial metric function while the temporal component remains unchanged. Consequently, the field equations are separated into two independent arrays: one is related to the seed source and the other characterizes the extra sector. In order to derive the solution corresponding to the isotropic sector, we use the Friedmann–Lemaitre–Robertson–Walker cosmic model and employ the barotropic equation of state as well as power-law model. Finally, we study the impact of decoupling parameter to describe different eras of the universe through graphical analysis. It is found that physically viable and stable trends of the resulting solution are achieved for both radiation-dominated as well as matter-dominated epochs in this modified theory.