Abstract

The strong constraints of conformal symmetry cause any nearly-conformal sector to blueshift tensor fluctuations in cosmology. Hidden sectors with approximate conformal symmetry, which may be quite large, are a well-motivated extension of physics beyond the Standard Models of particle physics and cosmology. They can therefore lead to a detectable shift in the tensor tilt for next-generation CMB and gravitational wave experiments. We compute the leading-order contribution to the in-in graviton two-point function from virtual loops in such sectors to demonstrate this universal effect. In units where a single conformally-coupled scalar is 1, limits from Stage-IV CMB experiments could bound the size of this extra sector to be smaller than ∼1015, under a plausible calculational assumption backed by a simple power counting argument. This would be sufficient to rule out N-Naturalness as a complete resolution of the hierarchy problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.