Structural health monitoring (SHM) is a modern technique f or damage identification in the e xis ting structure. The structural stiffness, frequency, damping, and dominant mode shapes represent the actual operating conditions of the structure. The main principle of structural health monitoring is to identif y the mod al parameters from experime ntal resu lts both damaged and undamaged conditions. Damage is much effective to decrease stiffness and strength of structural components and it changes dynamic behaviour and damping ratio of whole structures. Bruel & Kjaer experi mental modal analys is technique is r ecently used for civil engineering structures for modal parameters estimation. The paper describes the initial structural health monitoring of a steel frame . The modal parameters were estimated for undamaged condition s a nd these result s are verified and up dated by the numerical FEM tool SAP2000. For the undamaged structure , mode shapes and frequencies were calibrated properly. In the second step, damaged was initiated by dismantling one element from the lower part of the frame. The estimat ed m odal parameter s were compared to the initial one. The mode shapes and frequencies are quite different for some specific mode due to damage initiation . One extra mode was created for the damaged frame due to damage initiation. The 4 th mode was not found f or the initial m easurement because of presence of lower beam. Lower beam restraints the 4 th mode and the frame behaves more flexible. Keywords: SHM , Modal parameters, FEM modelling, Damage characterization, Experimental mo dal analysis (EMA) .
Read full abstract