Ammonia is the primary environmental factor affecting the growth and health of crustaceans. It would induce oxidative stress and metabolic disorders. Extra amount of energy was demanded to maintain the physiological functions under ammonia stress. However, limited information was available on its effects on the main nutrient metabolism, as well as the nutrient sensing signaling pathways. In the present study, shrimp Litopenaeus vannamei were exposed to acute ammonia stress and injected with amino acid solution. The results showed that acute ammonia exposure resulted in lower free amino acid levels in hemolymph, incomplete activation of the mechanistic target of rapamycin (mTOR) signaling and cascaded less protein synthesis in muscle. It induced autophagy and activated the AMP-activated protein kinase (AMPK) pathway. Meanwhile, ammonia exposure enhanced glycolysis and lipogenesis, but inhibited lipolysis. The results characterized the integrated metabolic responses and nutrient signaling to ammonia stress. It provides critical clues to understand the growth performance and physiological responses in shrimp under ammonia stress.
Read full abstract