Satellite systems around giant planets are immersed in a region of complex resonant configurations. Understanding the role of satellite resonances contributes to comprehending the dynamical processes in planetary formation and posterior evolution. Our main goal is to analyse the resonant structure of small moons around Uranus and propose different scenarios able to describe the current configuration of these satellites. We focus our study on the external members of the regular satellites interior to Miranda, namely Rosalind, Cupid, Belinda, Perdita, Puck, and Mab, respectively. We use N-body integrations to perform dynamical maps to analyse their dynamics and proximity to two-body and three-body mean-motion resonances (MMR). We found a complicated web of low-order resonances amongst them. Employing analytical prescriptions, we analysed the evolution by gas drag and type-I migration in a circumplanetary disc (CPD) to explain different possible histories for these moons. We also model the tidal evolution of these satellites using some crude approximations and found possible paths that could lead to MMRs crossing between pairs of moons. Finally, our simulations show that each mechanism can generate significant satellite radial drift leading to possible resonant capture, depending on the distances and sizes.
Read full abstract