Phosphorescence spectra of nonphosphorescent or very weakly phosphorescent new UV absorbers, 2-methylphenyl cinnamate (MePC), 2-methylphenyl 4-methoxycinnamate (MePMC) and 2-methylphenyl 4-ethoxycinnamate (MePEC) have been observed by using external heavy atom effects of ethyl iodide in ethanol at 77 K. The lowest excited triplet (T(1)) energies of these new UV absorbers are lower than those of a widely used UV-A absorber, 4-tert-butyl-4'-methoxydibenzoylmethane (BM-DBM), in both keto and enol forms. The intermolecular triplet-triplet energy transfer from photolabile BM-DBM to MePMC was observed by measuring the time-resolved phosphorescence spectra. Electron paramagnetic resonance spectra have been observed for the T(1) states of these new UV absorbers in ethanol at 77 K by using benzophenone as a triplet sensitizer. The observed T(1) lifetimes, zero-field splitting (ZFS) parameters and molecular orbital calculations of the ZFS parameters suggest that T(1) states of these new UV absorbers posses mainly (3)ππ* character. The deactivation processes of the lowest excited singlet (S(1)) states are predominantly fluorescence and internal conversion to the ground (G) states in MePMC and MePEC, while the main deactivation process of the S(1) state of MePC is internal conversion to the G state. The molar absorption coefficients of MePMC and MePEC in the UV-A and UV-B regions are larger than that of most widely used UV-B absorber, octyl methoxycinnamate.
Read full abstract