BackgroundPrevious studies have linked noise exposure with adverse cardiovascular events. However, evidence remains inconsistent, and most previous studies only focused on traffic noise, excluding other anthropogenic sources like constructions, industrial process and commercial activities. Additionally, few studies have been conducted in the U.S. or evaluated the non-linear exposure-response relationships. MethodsWe conducted a relative incidence analysis study using all cardiovascular diseases mortality as cases (n = 936,019) and external causes mortality (n = 232,491) as contrast outcomes. Mortality records geocoded at residential addresses were obtained from five U.S. states (Indiana, 2007; Kansas, 2007–2009, Missouri, 2010–2019, Ohio, 2007–2013, Texas, 2007–2016). Time-invariant long-term noise exposure was obtained from a validated model developed based on acoustical measurements across 2000–2014. Noises from both natural sources (natural activities, including animals, insects, winds, water flows, thunder, etc.) and anthropogenic sources (human activities, including transportation, industrial activities, community facilities & infrastructures, commercial activities, entertainments, etc.) were included. We used daytime and nighttime total anthropogenic noise & day-night average sound pressure level combining natural and anthropogenic sources as exposures. Logistic regression models were fit controlling for Census tract-level & individual-level characteristics. We examined potential modification by sex by interaction terms and potential non-linear associations by thin plate spline terms. ResultsWe observed positive associations for daytime anthropogenic L50 (sound level exceeded 50% of time) noise (10-dBA OR = 1.047, 95%CI 1.025–1.069), nighttime anthropogenic L50 noise (10-dBA OR = 1.061, 95%CI 1.033–1.091) in a two-exposure-term model, and overall Ldn (day-night average) sound pressure level (10-dBA OR = 1.064, 95%CI 1.040–1.089) in single-exposure-term model. Females were more susceptible to all three exposures. All exposures showed monotonic positive associations with cardiovascular mortality up to certain thresholds around 45–55 dBA, with a generally flattened or decreasing trend beyond those thresholds. ConclusionsBoth daytime anthropogenic and nighttime anthropogenic noises were associated with cardiovascular disease mortality, and associations were stronger in females.