The aim of this study was to explore whether MAF bZIP transcription factor B (MAFB) might alleviate ulcerative colitis (UC) in dextran sulfate sodium (DSS)-induced mice and LPS-induced IEC-6 cells. UC in vivo and in vitro model was established by using DSS and LPS, respectively. The mice body weight and disease activity index (DAI) score were recorded daily, and colon length was measured. Moreover, the permeability was evaluated utilizing a fluorescein isothiocyanate dextran (FITC-Dextran) probe. Histopathological changes of DSS-induced colitis mice was assessed utilizing H&E staining. Next, qRT-PCR was performed to detect IL-1β, IL-6, TNF-α, and IL-10 level in in vivo and in vitro. Furthermore, the level of MDA, SOD, CAT, and GSH were evaluated in colon tissues. Besides, the expressions of tight junction proteins and NF-κB pathway relative proteins were examined in colitis mice and IEC-6 cells using western blot, immunohistochemistry and immunofluorescence. MAFB level was downregulated in DSS-induced colitis mice. Moreover, the upregulation of MAFB protected mice from DSS-induced colitis by suppressing DSS-induced inflammation, oxidative stress, and intestinal barrier impairment. We also demonstrated that the upregulation of MAFB inactivated NF-κB pathway in DSS-caused colitis mice. Subsequently, we observed that MAFB upregulation could inhibit LPS-caused epithelial barrier impairment and inflammation in IEC-6 cells. Additionally, MAFB overexpression could suppress the activation of NF-κB pathway in IEC-6 cells. The upregulation of MAFB could protect against UC via the suppression of inflammation and the intestinal barrier impairment through inhibiting the NF-κB pathway.
Read full abstract