Abstract

BackgroundCoffee berry extracts are anti-lipogenic and lipolytic. This study aims to investigate the effect and mechanism of coffee pulp on high-fat diet (HFD)-induced glucose and lipid metabolism disorder in mice. MethodsThe type 2 diabetes (T2D) mouse model was established by feeding the C57BL/6 J mice with HFD. Mice were administered with coffee pulp diluted in drinking water before or after the establishment of the T2D mouse model. After treatment, the body weight and fasting blood glucose (FBG) of mice were monitored; the intraperitoneal glucose tolerance test (IPGTT) of mice was performed; plasma insulin was determined by ELISA; serum total cholesterol (TC), triglyceride (TG) and liver TG were determined by biochemical analysis; hematoxylin-eosin (H&E) staining was used to evaluate organ histomorphology. Gene expression of key genes in de novo lipogenesis (DNL) in the liver was examined by quantitative reverse transcription PCR (RT-qPCR). ResultsMice that consumed coffee pulp after modeling showed reduced FBG and liver TG, improved IPGTT, and alleviated fatty liver. Consuming coffee pulp before modeling prevented HFD-induced blood glucose and plasma TG increases. Mice consuming coffee pulp also had lower body fat and liver TG compared to the model group. qPCR results showed that the expression of transcription factors (Srebp1, PPARγ) and genes (Fasn, CideA, Plin3, Plin4, Plin5) related to DNL and lipid droplets (LD) formation in the liver of mice consuming coffee pulp were significantly lower than those of the control group. ConclusionsOur study demonstrated that coffee pulp can attenuate HFD-induced disorders of glucose and lipid metabolism, and this effect may be related to the key pathways of lipid synthesis DNL and LD formation pathways in the liver.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.