Abstract PURPOSE: Treatment response is heterogeneous among patients with pediatric low-grade glioma (pLGG), the most frequent childhood brain tumor. Upfront prediction of progression-free survival (PFS) may facilitate more personalized treatment planning and improve outcomes for the pLGG patients. In this work, we explored the additive value of radiomics to clinical measures for prediction of PFS in pLGGs. We further sought associations between the derived risk groups and underlying alterations in key genomic and transcriptomic variables. METHODS: Quantitative radiomic features were extracted from pre-operative multi-parametric MRI scans (T1, T1-post, T2, T2-FLAIR) of 96 patients with newly diagnosed pLGG (median age, 8.59, range, 0.35-18.87 years; median PFS, 25.23, range, 3.03-124.83 months). Multivariate Cox proportional hazard’s (Cox-PH) regression models were fitted using 5-fold cross-validation on a training cohort of 68 subjects and tested on 28 patients. Three models were generated using (1) only clinical variables (age, sex, and extent of tumor resection), (2) radiomic features, and (3) clinical and radiomic variables. The dimensionality of radiomic features in Cox-PH models was reduced by applying Elastic Net regularization penalty to identify a subset of variables that are most predictive of PFS. The patients were then stratified into three groups of high, medium, and low-risk based on model predictions. RESULTS: Cox-PH modeling resulted in a concordance index (c-index) of 0.55 for clinical data, 0.65 for radiomics, and 0.73 for a combination of clinical and radiomic variables, highlighting the additive value of radiomics to the readily available clinical information in prediction of PFS. Radiogenomic assessments revealed significant differences in expression of BRAF, NF1, TSC1, ALK (p<0.01), and RB1 (p<0.05) genes in the high-risk group, compared to the medium and low-risk groups. CONCLUSION: Our results demonstrate the value of integrating radiomics with clinical measures to improve risk assessment of patients with pLGG through improved pretreatment prediction of PFS.
Read full abstract