Rubbers prepared from technical poly(butadiene) and natural poly(isoprene) are studied by field-cycling (FC) 1H NMR relaxometry to elucidate the changes of the relaxation spectrum. Starting with the non-cross-linked polymer successively cross-links are introduced via sulfur or peroxide vulcanization. Applying an advanced home-built relaxometer allows one to probe entanglement dynamics in addition to Rouse dynamics. We show that entanglement dynamics evidenced in terms of a characteristic power-law in the NMR susceptibility is still observed with an exponent identical to that in non-cross-linked linear polymers. Yet, the entanglement regime disappears more and more from the accessible frequency window upon increasing the cross-link density and a spectrally enlarged Rouse regime is revealed. Adding a swelling agent, the manifestation of the Rouse and entanglement regimes virtually does not change, yet, the apparent power-law exponents increase. Concomitant multiple-quantum (MQ) 1H NMR experiments provide information on the structure of the rubber network in terms of the residual dipolar coupling and the fraction of the network defects, i.e., persisting entangled or nonentangled chains, introduced upon cross-linking and swelling.
Read full abstract