Language is fundamental to human communication, allowing individuals to express and exchange ideas, thoughts, and emotions. In early childhood, some children experience communication disorders that impede their ability to articulate words correctly, posing significant challenges to their learning and development. This issue is exacerbated in developing countries, where limited resources and a lack of technological tools hinder access to effective speech therapy. Traditional speech therapy remains vital, but the latest technological advancements have introduced robotic assistants to enhance therapy for communication disorders. Despite their potential, these technologies are often inaccessible in developing regions due to high production costs and a lack of sustainable manufacturing models. For these reasons, this paper presents “FONA,” a robotic assistant that employs rule-based expert systems to provide tactile, auditory, and visual stimuli. FONA supports children aged 3 to 6 in speech therapy by delivering exercises such as syllable production, word formation, and pictographic storytelling of various phonemes. Notably, FONA was successfully tested on children with cochlear implants, reducing the number of sessions required to produce isolated phonemes. The paper also introduces an innovative analysis of the Make To Order (MTO) manufacturing system for producing FONA in developing countries. This analysis explores two key perspectives: collaborative networks and entrepreneurship, offering a sustainable production model. In a pilot experiment, FONA significantly improved children’s attention spans, increasing the period by 17 min. Furthermore, the economic analysis demonstrates that producing FONA through collaborative networks can significantly reduce costs, making it more accessible to institutions in developing countries. The findings suggest that the project is viable for a five-year period, providing a sustainable and effective solution for addressing communication disorders in children.
Read full abstract