Target detection and analysis using polarimetric synthetic aperture radar (PolSAR) images are currently of great interest in synthetic aperture radar (SAR) applications. For a complex target, the scattering characteristics are determined by different independent sub-scatterers and their interaction; therefore, the scattering characteristics should be described by a statistical method due to randomness and depolarization. Furthermore, the inherent speckle in SAR data must be reduced by spatial averaging at the expense of loss of spatial resolution. The polarimetric similarity parameter (PSP) is an effective parameter to analyse target characteristics. In order to describe a complex distributed target, two new methods for calculating PSP are proposed, namely Stokes matrix-based PSP (S-PSP) and multiple PolSAR similarity parameter (MPSP). The characteristics of a target can be described and extracted on the basis of the polarimetric similarity, and then the similarity-enhanced target detection methods using S-PSP and MPSP are implemented and demonstrated with German Aerospace Centre (DLR) experimental SAR L-band multiple temporal PolSAR images of Oberpfaffenhofen test site (DE), Germany. The results confirmed that the proposed methods are effective for detection and analysis of buildings in urban areas.
Read full abstract