This paper deals with the austempering of ductile iron (ADI) and clarifies the influential austempering parameters during the production of ADI. During the austempering process, the heat treatment parameters can be varied, thus influencing the final microstructure and, of course, the mechanical properties of ADI. To appropriately conduct experiments and obtain good results, an experimental plan was developed using the Design Expert 13 software. Along with the heat treatment parameters, the influence of the copper content on the ADI toughness, tensile strength, and elongation was determined. The obtained results from this experiment were used to develop unique mathematical models which describe the influences of heat treatment and copper content on the observed mechanical properties of ADI samples. These mathematical models can be applied to predict the analysed mechanical properties of ADI in the dependence of heat treatment parameters and copper content in base ductile iron. For the multi response optimisation of toughness, tensile strength, and elongation, a hybrid grey-fuzzy technique was presented as a significant contribution to the enhancement of the analysed mechanical properties. Consequently, the copper content and heat treatment parameter levels that resulted in the maximal mechanical properties’ functions were defined.
Read full abstract