The equilibria among spin-labeled amine local anesthetic species in dioleoylphosphatidylcholine liposomes at an anesthetic:lipid mole ratio of 1:100 are investigated. Electron spin resonance (ESR) spectra demonstrate that anesthetic mobility within the bilayer is charge-dependent, with the uncharged species the more mobile. Partition coefficient measurements confirm ESR evidence that changes in anesthetic mobility represent anesthetic-phospholipid interaction and not changes in bilayer fluidity. Spin-exchange attenuation experiments show that anesthetics within the bilayer are accessible to the aqueous medium. Dependence of tertiary-amine anesthetic pK on dielectric constant has been used to estimate the interfacial pK . We propose a model of equilibria among species of the tertiary amine anesthetic in the aqueous medium and those intercalated in the bilayer, including a species electrostatically bound to the lipid phosphate. Using experimentally determined equilibrium constants, the model provides the binding constant between the electrostatically bound and unbound cationic anesthetics within the bilayer. The model simulates the pH dependence of the mobile fraction of total anesthetic population determined by subtraction techniques on experimental ESR spectra.
Read full abstract