Abstract

The equilibria among spin-labeled amine local anesthetic species in dioleoylphosphatidylcholine liposomes at an anesthetic:lipid mole ratio of 1:100 are investigated. Electron spin resonance (ESR) spectra demonstrate that anesthetic mobility within the bilayer is charge-dependent, with the uncharged species the more mobile. Partition coefficient measurements confirm ESR evidence that changes in anesthetic mobility represent anesthetic-phospholipid interaction and not changes in bilayer fluidity. Spin-exchange attenuation experiments show that anesthetics within the bilayer are accessible to the aqueous medium. Dependence of tertiary-amine anesthetic pK on dielectric constant has been used to estimate the interfacial pK . We propose a model of equilibria among species of the tertiary amine anesthetic in the aqueous medium and those intercalated in the bilayer, including a species electrostatically bound to the lipid phosphate. Using experimentally determined equilibrium constants, the model provides the binding constant between the electrostatically bound and unbound cationic anesthetics within the bilayer. The model simulates the pH dependence of the mobile fraction of total anesthetic population determined by subtraction techniques on experimental ESR spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.