Abstract
Ionic liquids (ILs) have been studied as potential components in antibiotic formulations based on their abilities to permeabilize and penetrate lipid bilayer, which correlate with their antibacterial effects. Fatty acid-based ILs (FAILs), in which the anion is a long-chain fatty acid, can permeabilize lipid membranes and have been used in biomedical applications since they have low human cell cytotoxicity. In this work we investigated the abilities of several different FAILs to permeabilize lipid bilayers and how that permeabilization correlates with antibacterial activity, cell membrane permeability, and cytotoxicity. The FAILs consisted of the cations tetramethylguanidinium (TMG) or choline combined with octanoate or decanoate. These FAILs were tested on model bilayer vesicles with three different lipid compositions for membrane permeabilization using a leakage assay. They were then tested for antibiotic and membrane permeabilization on bacterial and mammalian cells. The results show that while the octanoate-based FAILs do not form micelles and have low activities on vesicles and biological cells, the decanoate-based FAILs can permeabilize bilayers and have biological activities that correlate with the model vesicle results. The ILs with both cation and fatty-acid anion have strong activities while the decanoate alone has only minimal permeabilization and antibiotic activity. Membrane permeabilization occurs at FAIL concentrations below their CMC values which suggests that their mechanism of action may not involve micelle formation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.