In this work, we introduce a novel method to develop whole system digital twins (DTs) for advanced nuclear reactors. This method treats a complex reactor system as a heterogeneous graph: with the system components as different types of graph nodes and their physical interconnections as edges. Based on the heterogeneous graph, a graph neural network combining graph convolution and temporal node attention is developed as the DT, facilitating a comprehensive understanding of the system’s dynamic behavior. By utilizing the System Analysis Module (SAM) code for simulating various operational transients, we develop a graph-based database that trains the DT. This DT is characterized by two primary functions: It can infer the entire system’s status using sparse node information, and it can predict the progress of transients based on current and historical system information. Our approach is validated through case studies on the Experimental Breeder Reactor II (EBR-II) system and a generic Fluoride-salt-cooled High-temperature Reactor (gFHR), demonstrating the DT’s accuracy in forecasting operational transients. The DT’s rapid computation capabilities enhance its potential for supporting advanced reactor operations, offering benefits in intelligent simulation, autonomous control, and anomaly detection, paving the way for improved safety analysis and intelligent component health management for advanced reactor systems and reducing their operations and maintenance cost.
Read full abstract