Abstract
U-10Zr Metal fuel is a promising nuclear fuel candidate for next-generation sodium-cooled fast spectrum reactors. Since the Experimental Breeder Reactor-II in the late 1960s, researchers accumulated a considerable amount of experience and knowledge on fuel performance at the engineering scale. However, a mechanistic understanding of fuel microstructure evolution and property degradation during in-reactor irradiation is still missing due to a lack of appropriate tools for rapid fuel microstructure assessment and property prediction based on post irradiation examination. This paper proposed a machine learning enabled workflow, coupled with domain knowledge and large dataset collected from advanced post-irradiation examination microscopies, to provide rapid and quantified assessments of the microstructure in two reactor irradiated prototypical annular metal fuels. Specifically, this paper revealed the distribution of Zr-bearing secondary phases and constitutional redistribution across different radial locations. Additionally, the ratios of seven different microstructures at various locations along the temperature gradient were quantified. Moreover, the distributions of fission gas pores on two types of U-10Zr annular fuels were quantitatively compared.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.