Abstract

Advanced nuclear reactors offer innovative applications due to their portability, reliability, resiliency, and high capacity factors. To operate them on a wider scale, reducing maintenance life-cycle costs while ensuring their integrity is essential. Autonomous operations in advanced nuclear reactors using augmented Digital Twin (DT) technology can serve as a cost-effective solution by increasing awareness about the system’s health. A key component of nuclear DT frameworks is the condition monitoring of safety systems, such as piping-equipment systems, which involves acquiring and monitoring the plant’s sensor data. This research proposes a condition monitoring methodology utilizing deep learning algorithms, such as multilayer perceptions (MLP) and convolutional neural networks (CNNs), to detect degradation and its severity in nuclear piping-equipment systems. Sensor signals are processed to obtain the power spectral density and the Short-Time Fourier transform, and feature extraction methodologies are proposed to develop degradation-sensitive data repositories. The performance of MLP, one-dimensional (1D) CNN, and 2D CNN within the proposed condition monitoring framework is compared using a finite element model of a 3D piping system subjected to seismic loads as the application case study. Various approaches, such as dropout, k-Fold validation, regularization, and early stopping of training the network, are investigated to avoid overfitting the models to the input sensor data. The predictive capability and computational capacity of the deep learning algorithms are also compared to detect degradation in the Z-pipe system of the Experimental Breeder Reactor II (EBRII). The Z-pipe system is subjected to harmonic excitations that represent normal operating loads, such as pump-induced vibrations. The findings of the study indicate that the proposed artificial intelligence (AI)-driven condition monitoring framework demonstrates superior prediction accuracies with a 2D CNN, whereas the MLP exhibits higher computational efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.