We analyzed the possibilities of the use of the cluster model of water to assess its viscosity. The Nemethy-Scheraga model was used in our study. In a simplified version, this model implies the presence of water cluster that are linked by hydrogen bonds as well as individual molecules (monomolecules) interacting only by van der Waals forces. The paper gives an estimation of average cluster size. Based on the experimental temperature dependences of viscosity and density, the content of monomolecules in water was approximately determined. In the first case, the ratio of the viscosity of water to monomolecules was estimated from the inverse Arrhenius temperature dependence of viscosity by considering experimental activation energy ~18.6 kJ mol–1 (0÷300C) and energy of dispersion interactions ~7.4 kJ mol–1. Then, the volumetric content of monomolecules was estimated by using the inverse Betchelor's formula, which relates the viscosity of the suspension (clusters) and dispersion medium (monomolecules) to their ratio. On the other hand, a similar estimation was performed based on the density of water, clusters that were considered similar to ice floes, and the estimated density of monomolecules. Both estimates showed that the volumetric content of water not bound into clusters does not exceed 9%. It was concluded that the structure of water most likely corresponds to the clathrate model, according to which some of the H2O molecules move into the middle of ice-like clusters, and vacancies are stabilized by H3O+–OH– pairs.