Abstract

The thermal decomposition of ethyl acetate was experimentally studied in a newly designed fast pyrolysis set-up. The results were compared to theoretical calculations and literature values in order to proof the experimental concept. The reaction was carried out in a free fall tubular reactor with a residence time of 0.15 s. The identification and quantification of products stream composition was performed online using a GC-TCD/FID. First, an overview of the reaction rate at feed volumes of 0.25, 0.50 and 0.75 mL was obtained at reaction temperature between 400 to 600 °C in intervals of 50 °C. As a result mass transfer limitation for feeds larger than 0.5 mL were identified. For the second approach, a constant feed volume of 0.25 mL and temperatures between 420 to 550 °C were investigated. Using the experimental results, a global kinetic model is proposed for the thermal decomposition of ethyl acetate into ethylene and acetic acid through a first order unimolecular reaction. Also, theoretical calculations were performed at ωB97XD/6-311++G(d,p) level. A concerted mechanism through a six-membered transition state was identified in the reaction path. The theoretical and experimental activation energy values lie within the literature values between 193 and 213 kJ/mol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.