Plastics are produced, consumed, and disposed of worldwide, with more than eight million tons of plastic litter entering the ocean each year. Plastic litter accumulates in marine and terrestrial environments through a variety of pathways. Large plastic debris can be broken down into micro- and nano-plastic particles through physical/mechanical mechanisms and biologically or chemically mediated degradation. Their toxicity to aquatic organisms includes the scavenging of pollutant compounds and the production of reactive oxygen species (ROS). Higher levels of ROS cause oxidative damages to microalgae and bacteria; this triggers the release of large amounts of exopolymeric substances (EPSs) with distinct molecular characteristics. This review will address what is known about the molecular mechanisms phytoplankton and bacteria use to regulate the fate and transport of plastic particles and identify the knowledge gaps, which should be considered in future research. In particular, the microbial communities react to plastic pollution through the production of EPSs that can reduce the plastic impacts via marine plastic snow (MPS) formation, allowing plastics to settle into sediments and facilitating their removal from the water column to lessen the plastic burden to ecosystems.