Lactic acid bacteria (LAB) exopolysaccharide (EPS) has good water absorption, high viscosity, good stability, so it was widely used in probiotics fields. In this study, EPS-producing LAB strain Lactiplantibacillus plantarum HDL-03 was isolated and identified. Moreover, the HDL-03 EPS was used as a stabilizer and mixed with AgNO3 to synthesize a novel nanoparticle AgNPs whose structure and properties were explored. The monosaccharide composition and molecular weight indicated that HDL-03 EPS was a heteropolysaccharide composed of mannose and glucose. Fourier transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR) spectroscopy analysis and methylation results jointly proved it was a heteropolysaccharide containing 1,3-Manp and 1,6-Glcp. The X-Ray diffraction (XRD) results showed that this EPS has an amorphous structure, while the synthesized AgNPs have crystalline properties. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) results indicated EPS had a smooth and dense sheet structure, while the surface of AgNPs became rougher and large holes appeared after synthesis. Zeta particle size analysis suggested that the particle size of AgNPs increased by 36.63 nm compared to HDL-03 EPS. FT-IR analysis exhibited that the position of the characteristic peaks of AgNPs changed. The OH moving from a wavelength of 3388.49 cm−1 to a wavelength of 3316.79 cm−1 and telescopic vibration peak changed from 1356.07 cm−1 to 1344.22 cm−1. A plate inhibition test revealed the effect of different concentrations of EPS and AgNO3 synthesized AgNPs on the diameter of inhibition circle produced by the indicator bacteria Escherichia coli and Staphylococcus aureus. Furthermore, AgNPs were applied to the indicator bacteria, which the minimum inhibitory concentration (MIC), time-inhibitory curve, and changes in extracellular conductivity, nucleic acids, proteins, ATP, and lactate dehydrogenase (LDH) levels were determined. The AgNPs inhibited the growth of E. coli and S. aureus and exhibited outstanding antimicrobial properties. With the increase of treatment time, the degree of cell membrane damage increased, the permeability enhanced, and the intracellular substances leaked. These results indicate that HDL-03 EPS has good potential for applications in the production of food packaging, antimicrobials, catheters, textiles and coatings.
Read full abstract