Abstract

This study aimed to enhance the production of mycelium biomass and exopolysaccharides (EPS) of Pleurotus ostreatus in submerged fermentation. Response Surface Methodology (RSM)sought to optimize culture conditions, whereas Artificial Neural Network (ANN)aimed to predict the mycelium biomass and EPS. After optimization of RSM model conditions, the maximum biomass (36.45 g/L) and EPS (6.72 g/L) were obtained at the optimum temperature of 22.9 °C, pH 5.6, and agitation of 138.9 rpm. Further, the Genetic Algorithm (GA) was employed to optimize the cultivation conditions in order to maximize the mycelium biomass and EPS production. The ANN model with an optimized network structure gave the coefficient of determination (R2) value of 0.99 and the least mean squared error of 1.9 for the validation set. In the end, a graphical user interface was developed to predict mycelium biomass and EPS production.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.