The inhibitory properties of (methylenecyclopropyl)formyl-CoA (MCPF-CoA), a metabolite derived from a natural amino acid, (methylenecyclopropyl)glycine, against bovine liver enoyl-CoA hydratase (ECH) were characterized. We have previously demonstrated that MCPF-CoA specifically targets ECHs, which catalyze the reversible hydration of alpha,beta-unsaturated enoyl-CoA substrates to the corresponding beta-hydroxyacyl-CoA products. Here, we synthesized (R)- and (S)-diastereomers of MCPF-CoA to examine the stereoselectivity of this inactivation. Both compounds were shown to be competent inhibitors for bovine liver ECH with nearly identical second-order inactivation rate constants (k(inact)/K(I)) and partition ratios (k(cat)/k(inact)), indicating that the inactivation is nonstereospecific with respect to ring cleavage. The inhibitor, upon incubation with bovine liver ECH, labels a tryptic peptide, ALGGGXEL, near the active site of the protein, where X is the amino acid that is covalently modified. Cloning and sequence analysis of bovine liver ECH gene revealed the identity of the amino acid residue entrapped by MCPF-CoA as Cys-114 (mature sequence numbering). On the basis of gHMQC (gradient heteronuclear multiple quantum coherence) analysis with [3-(13)C]-labeled MCPF-CoA, the ring cleavage is most likely induced by the nucleophilic attack at the terminal carbon of the exomethylene group (C(2)'). We propose a plausible inactivation mechanism that involves relief of ring strain and is consistent with examples found in the literature. In addition, these studies provide important clues for future design of more efficient and selective inhibitors to control and/or regulate fatty acid metabolism.