Peripheral arterial disease (PAD) is associated with augmented blood pressure (BP) and impaired coronary blood flow responses to exercise, which may increase cardiovascular risk. We investigated the effects of leg revascularization on the BP and coronary blood flow responses to exercise in PAD. Seventeen PAD patients (11 men, 66 ± 2 yr) performed single-leg plantar flexion exercise 24 h before and 1 mo following leg revascularization. BP and heart rate (HR) were measured continuously, and rate pressure product (systolic BP × HR) was calculated as an index of myocardial oxygen demand. Coronary blood velocity was obtained by transthoracic Doppler echocardiography in 8/17 subjects. The mean BP response to plantar flexion exercise was attenuated by leg revascularization (pre-revascularization: 15 ± 4 vs. post-revascularization: 7 ± 3 mmHg, P = 0.025). The HR response to plantar flexion was also attenuated following leg revascularization (pre-revascularization: 9 ± 1 vs. post-revascularization: 6 ± 1 beats/min, P = 0.006). The change in coronary blood velocity with exercise was greater at the post-revascularization visit: 4 ± 1 vs. pre-revascularization: -1 ± 2 cm/s ( P = 0.038), even though the change in rate pressure product was not greater following revascularization in these subjects (pre-revascularization: 2,796 ± 871 vs. post-revascularization: 1,766 ± 378 mmHg·beats/min, P = 0.082). These data suggest that leg revascularization alters reflex control of BP, HR, and coronary blood flow in response to exercise in patients with PAD. NEW & NOTEWORTHY We found that peripheral revascularization procedures lowered exercise blood pressure and improved coronary blood flow in patients with peripheral arterial disease.
Read full abstract