Abstract

BackgroundDuring exercise as pulmonary blood flow rises, pulmonary capillary blood volume increases and gas exchange surface area expands through distention and recruitment. We have previously demonstrated that pulmonary capillary recruitment is limited in COPD patients with poorer exercise tolerance. Hypoxia and endothelial dysfunction lead to pulmonary vascular dysregulation possibly in part related to nitric oxide related pathways. PurposeTo determine if increasing dietary nitrate might influence lung surface area for gas exchange and subsequently impact exercise performance. MethodsSubjects had stable, medically treated COPD (n = 25), gave informed consent, filled out the St George Respiratory Questionnaire (SGRQ), had a baseline blood draw for Hgb, performed spirometry, and had exhaled nitric oxide (exNO) measured. Then they performed the intra-breath (IB) technique for lung diffusing capacity for carbon monoxide (DLCO) as well as pulmonary blood flow (Qc). Subsequently they completed a progressive semi-recumbent cycle ergometry test to exhaustion with measures of oxygen saturation (SpO2) and expired gases along with DLCO and Qc measured during the 1st work load only. Subjects were randomized to nitrate supplement group (beetroot juice) or placebo group (black currant juice) for 8 days and returned for repeat of the above protocol. ResultsExhaled nitric oxide levels rose >200% in the nitrate group (p < 0.05) with minimal change in placebo group. The SGRQ suggested a small fall in perceived symptom limitation in the nitrate group, but no measure of resting pulmonary function differed post nitrate supplementation. With exercise, there was no influence of nitrate supplementation on peak VO2 or other measures of respiratory gas exchange. There was a tendency for the exercise DLCO to increase slightly in the nitrate group with a trend towards a rise in the DLCO/Qc relationship (p = 0.08) but not in the placebo group. The only other significant finding was a fall in the exercise blood pressure in the nitrate group, but not placebo group (p < 0.05). ConclusionDespite evidence of a rise in exhaled nitric oxide levels with nitrate supplementation, there was minimal evidence for improvement in exercise performance or pulmonary gas exchange surface area in a stable medically treated COPD population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.