The excited-state intramolecular proton-transfer (ESIPT) dynamics of 2-(4-(diethylamino)phenyl)-3-mercapto-4H-chromen-4-one (3NTF) and 3-mercapto-2-(4-(trifluoromethyl)phenyl)-4H-chromen-4-one (3FTF) have been investigated using time-dependent density functional theory (TDDFT). Upon photoexcitation, 3NTF exhibits a single fluorescence emission while 3FTF is fluorescence quenched when dissolved in cyclohexane solution. The present study reveals that both species undergo barrierless ESIPT process, and the underlying reason for fluorescence quenching in 3FTF has been elucidated. Specifically, it is concluded that intersystem crossing (ISC) is responsible for the fluorescence quenching in the 3FTF molecule due to the energy gap between the S1 and T2 states is only 0.12 eV plus large S1 → T2 spin–orbit coupling resulting in a strong interaction between the singlet and triplet states. The present study provides a reference for the fluorescence quenching associated with thiol-hydrogen bond molecules, and it is helpful for further research on ESIPT reactions of sulfur-containing molecules.
Read full abstract