To develop a flexible, vendor-neutral EPI sequence for hyperpolarized 13C metabolic imaging. An open-source EPI sequence consisting of a metabolite-specific spectral-spatial RF excitation pulse and a customizable EPI readout was created using the Pulseq framework. To explore the flexibility of our sequence, we tested several versions of the sequence including a symmetric 3D readout with different spatial resolutions for each metabolite (1.0 cm3 and 1.5 cm3). A multichamber phantom constructed with a Shepp-Logan geometry, containing two chambers filled with either natural abundance 13C compounds or hyperpolarized (HP) [1-13C]pyruvate, was used to test each sequence. For experiments involving HP [1-13C]pyruvate, a single chamber was prefilled with nicotinamide adenine dinucleotide hydride and lactate dehydrogenase to facilitate the conversion of [1-13C]pyruvate to [1-13C]lactate. All experiments were performed on a Siemens Prisma 3T scanner. All the sequence variations localized natural-abundance 13C ethylene glycol and methanol to the appropriate compartment of the multichamber phantom. [1-13C]pyruvate was detectable in both chambers following the injection of HP [1-13C]pyruvate, whereas [1-13C]lactate was only found in the chamber containing nicotinamide adenine dinucleotide hydride and lactate dehydrogenase. The conversion rate from [1-13C]pyruvate to [1-13C]lactate (kPL) was 0.01 s-1 (95% confidence interval [0.00, 0.02]). We have developed and tested a vendor-neutral EPI sequence for imaging HP 13C agents. We have made all of our sequence creation and image reconstruction code freely available online for other investigators to use.
Read full abstract