We report the photoluminescence properties of DC sputtered zinc nitride thin films in the temperature range of 3.7–300 K. Zinc nitride samples grown at 150 °C exhibited a narrow photoluminescence band at 1.38 eV and a broad band at 0.90 eV, which were attributed to the recombination of free carriers with a bound state and deep-level defect states, respectively. The high-energy band followed the Varshni equation with temperature and became saturated at high excitation powers. These results indicate that the high-energy band originates from shallow defect states in a narrow bandgap. Furthermore, a red-shift of the observed features with increasing excitation power suggested the presence of inhomogeneities within the samples.