Objective: The contemporary treatment of a full-thickness burn consists of early eschar excision followed by immediate closure of the open wound using autologous skin. However, most animal models study burn wound healing with the persistence of the burn eschar. Our goal is to characterize a murine model of burn eschar excision to study wound closure kinetics. Approach: C57BL/6 male mice were divided into three groups: contact burn, scald burn, or unburned control. Mice were burned at 80°C for 5, 10, or 20 s. After 2 days, the eschar was excised and wound closure was documented until postexcision day 13. Biopsies were examined for structural morphology and α-smooth muscle actin. In a subsequent interval-excision experiment (80°C scald for 10 s), the burn eschar was excised after 5 or 10 days postburn to determine the effect of a prolonged inflammatory focus. Results: Histology of both contact and scald burns revealed characteristics of a full-thickness injury marked by collagen coagulation and tissue necrosis. Excision at 2 days after a 20-s burn from either scald or contact showed significant delay in wound closure. Interval excision of the eschar, 5 or 10 days postburn, also showed significant delay in wound closure. Both interval-excision groups showed prolonged inflammation and increased myofibroblasts. Innovation and Conclusions: We have described the kinetics of wound closure in a murine model of a full-thickness burn excision. Both contact and scald full-thickness burn resulted in significantly delayed wound closure. In addition, prolonged interval-excision of the eschar appeared to increase and prolong inflammation.
Read full abstract