Discoveries of above-room-temperature intrinsic ferromagnetism in two-dimensional (2D) van der Waals (vdW) materials offer a platform for studying fundamental 2D magnetism and spintronic devices, especially the recently discovered above-room-temperature 2D vdW Fe3GaTe2 (FGaT). However, the magnetic mechanism in FGaT remains elusive. Here, a detailed investigation using magnetic force microscopy on the thickness-dependent magnetic behavior of FGaT single crystals is reported. The Heisenberg exchange interaction constant (J) at room temperature is determined to be 1.32836 × 10-12 J/m. Our study combining angle-resolved photoemission spectroscopy and density functional theory suggests that the high Curie temperature in FGaT is attributed to the shift of the localized Fe d band toward the Fermi level as well as the enhanced magnetic exchange effect due to the strong itinerant ability of Fe. This work sheds light on the understanding of magnetism in FGaT and provides a promising platform to investigate the mechanisms of 2D magnetic materials.
Read full abstract