Though it is well known that G protein-coupled receptor kinase 2 [GRK2] is involved in regulation of mu opioid receptor [MOR] desensitization and morphine-related behaviors, the potential role of GRK2 in regulation of kappa opioid receptor [KOR] functions in vivo has not been established yet. A couple of recent studies have found that GRK2 activity desensitizes KOR functions via decreasing G protein-coupled signaling with sensitizing arrestin-coupled signaling. Nalfurafine, a G protein-biased KOR full agonist, produces an inhibitory effect on alcohol intake in mice, with fewer side effects (sedation, aversion, or anxiety/depression-like behaviors). Using RNA sequencing (RNA-seq) analysis, we first identified that nuclear transcript level of grk2 [adrbk1] (but not other grks) was significantly up-regulated in mouse nucleus accumbens shell (NAcs) after chronic excessive alcohol drinking, suggesting alcohol specifically increased NAcs grk2 expression. We then tested whether selective GRK2/3 inhibitor CMPD101 could alter alcohol intake and found that CMPD101 alone had no effect on alcohol drinking. Therefore, we hypothesized that the grk2 increase in the NAcs could modulate the nalfurafine effect on alcohol intake via interacting with the G protein-mediated KOR signaling. Nalfurafine decreased alcohol drinking in a dose-related manner, and pretreatment with CMPD101 enhanced the reduction in alcohol intake induced by nalfurafine, indicating an involvement of GRK2/3 blockade in modulating G protein-biased KOR agonism of nalfurafine. Together, our study provides initial evidence relevant to the transcriptional change of grk2 gene in the NAc shell after excessive alcohol drinking. Pharmacological GRK2/3 blockade enhanced nalfurafine’s efficacy, suggesting a GRK2/3-mediated mechanism, probably through the G protein-mediated KOR signaling.