Abstract
KOP-r agonist U50,488H produces strong aversion and anxiety/depression-like behaviors that enhance alcohol intake and promote alcohol seeking and relapse-like drinking in rodents. Mammalian target of rapamycin complex 1 (mTORC1) pathway in mouse striatum is highly involved in excessive alcohol intake and seeking, and in the U50,488H-induced conditioned place aversion. Therefore, we hypothesized that KOP-r activation increases alcohol consumption through the mTORC1 activation. This study focuses on: (1) how chronic excessive alcohol drinking (4-day drinking-in-the-dark paradigm followed by 3-week chronic intermittent access drinking paradigm [two-bottle choice, 24-h access every other day]) affected nuclear transcript levels of the mTORC1 pathway genes in mouse nucleus accumbens shell (NAcs), using transcriptome-wide RNA sequencing analysis; and (2) whether selective mTORC1 inhibitor rapamycin could alter excessive alcohol drinking and prevent U50,488H-promoted alcohol intake. Thirteen nuclear transcripts of mTORC1 pathway genes showed significant up-regulation in the NAcs, with two genes down-regulated, after excessive alcohol drinking, suggesting the mTORC1 pathway was profoundly disrupted. Single administration of rapamycin decreased alcohol drinking in a dose-dependent manner. U50,488H increased alcohol drinking, and pretreatment with rapamycin, at a dose lower than effective doses, blocked the U50,488H-promoted alcohol intake in a dose-dependent manner, indicating a mTORC1-mediated mechanism. Our results provide supportive and direct evidence relevant to the transcriptional profiling of the critical mTORC1 genes in mouse NAc shell: with functional and pharmacological effects of rapamycin, altered nuclear transcripts in the mTORC1 signaling pathway after excessive alcohol drinking may contribute to increased alcohol intake triggered by KOP-r activation.
Accepted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.