Exact and approximate techniques to determine the performance of annular fins with a step rectangular profile are developed. A simple approximate method is proposed to analyze the prevalent heat transfer characteristics of the fin array. An algebraic expression based on the mean value approach is used as an approximation tool, and the temperature distribution in the fins is determined using an exponential function. A method based on a modified Bessel function formulation is employed for exact analysis. The analyses are extended to optimize fins based on the principle of maximizing heat transfer rate for a given volume. The results obtained from the exact and approximate analyses are presented in a one-to-one comparative manner to allow for a wide range of practical design variables. The error in the approximate analysis calculations is investigated, and it is found to be well within engineering accuracy requirements. It is expected that the approximate analytical tool designed here will be extremely useful for designers who want to easily determine design parameters. Because the approximate methodology is so simple, all calculations can easily be done.
Read full abstract